

1ST IFCC, EFLM, AFCB CONFERENCE "LABORATORY MEDICINE: MEETING THE NEEDS OF MEDITERRANEAN NATIONS"

Rome, Italy 02/07/2018

The diagnosis of Hemoglobinopathies

Dr Antonino Giambona

Unit of Hematology of Rare Diseases of the Blood and blood-forming organs. Regional Reference Laboratory for screening and prenatal diagnosis of hemoglobinopathies Hospital Villa Sofia-Cervello Palermo, Italy

Hemoglobinopathies are the most common monogenic, autosomal

recessive hereditary disorders worldwide.

Annual births with major hemoglobin disorders

β-thalassemia major	22,989
HbE β thalassemia	19,128
HbH disease	9568
Hb Bart's hydrops (α ⁰ /α ⁰)	5183
SS disease	217,331
S β thalassemia	11,074
SC disease	54,736

 ~ 4.83 % of the world population is a healthy carrier of hemoglobinopathy 	 1.67% carrier of α and β thalassemia 1.92% carrier of HbS 1.0% carrier of HbE 0.3% carrier of HbC
Geographical Distribution of Thalassemia and Hemoglobin Disorders	Mediterranean bacin > 8.0 %Middle East > 10%India 3-15%South East Asia > 9.0%Thalassemia major transfusion dependentEurope 15.000
A breakdown of the annual number of births with the different hemoglobin disorders From available data (Modell and Darlison 2008; Weatherall 2010).	Italy6.000Sicily2.000

Carriers (heterozygotes) are generally healthy while the severe form can manifest in children of both genders, born from two healthy carriers.

Today, if subjects with hemoglobin disorders receive adequate therapies, have a good life expectancy but require expensive treatments:

Regular blood transfusion to maintain Hb levels above 10 g/dl. This requires adequate supplies of blood, screen to reduce reactions and to prevent the transmission of viruses and other contaminants.

- Regular expensive chelation therapy
- Other supportive therapy
- Multidisciplinary care for adult thalassemics to prevent and manage complications in vital organs (endocrine glands, liver, heart,....)

A.Giambona,¹ G. Damiani,² M. Vinciguerra,¹ C. Jakil,² M. Cannata,¹ F. Cassarà,¹ F. Picciotto,² G. Schillaci,² V. Cigna,² D. Renda,¹ F. Leto,¹ C. Passarello,¹ A. Maggio¹

2015

Screening and carrier diagnostics: Basic hematology methods (First Level Test)

• Complete blood count (CBC) or full blood count (FBC);

All red cell indices are important in evaluation inclusing:

- Hb (Hemoglobin)
- RBC (Red Cell Count)
- MCV (mean cell volume)
- MCH (mean corpuscular Hb content)
- **RDW** (red cell distribution width).
- Hemoglobin pattern analysis and hemoglobin component quantification
- HbA₂
- HbF
- Hb variants

Carrier of Thalassemia: Complete blood count evaluation

- High RBC (erythrocytosis) results from a mechanism that compensates for the chronic low MCH present in thalassaemia carriers.
- **Reduced Hb** value than normal (1-2 gr/dl)
- MCV, MCH and MCHC are variably reduced in thalassemia carriers
- **RDW** value can potentially discriminate betwee thalassemia carrier and iron deficiency and sometimes between thalassemia carrier and other rare cases.

NOTE:

- Electronic measurement is recommended especially for MCV (mean cell volume) for which the measurement should be direc
- Each laboratory should establish their own cut-off ranges for these parameters, based on the ethnicity of their patient population(s) and patient age group(s).

Carrier of Thalassemia: Hemoglobin pattern analysis (1)

- *HbA*₂ quantitation:
- HbA₂ levels above 3.5% is the standard cut-off value, above which heterozygosity for β thalassaemia is indicated.
- Rare genetic and acquired factors may increase or reduce HbA₂ level like the presence of common or rare α -chain variants, or δ chain variants. In this last case, the HbA₂ peak can be slitted in two peaks, or coexisting δ thalassaemia, which decreases the HbA₂ peak
- On most HPLC systems, derivatives of Hb S, may co-elute with HbA₂ resulting in an overestimation of the HbA₂ level (3.5- 4.5%).
- On most HPLC systems, hemoglobin variants which elute with or close to HbA₂ on HPLC may affect HbA₂ level

• HbF quantitation

- Carriers of β thalassaemia present with normal HbA and usually elevated HbA₂, while HbF levels can be normal.
- The normal amount of Hb F from two years after birth is usually less than 1%.
- The presence of elevated HbF can be associated with $\delta\beta$ or $\gamma\delta\beta$ deletion defects, hereditary persistence of fetal haemoglobin (HPFH), point mutations in the promoters of the G γ or A γ genes, erythropoietic stress, treatment with certain cytotoxic agents (e.g. hydroxyurea) or pregnancy

Carrier of Thalassemia: Hemoglobin pattern analysis (2)

Note:

- HPLC is a recommended method for simultaneous automatic detection and quantitation of hemoglobin fractions.
- Since system is automated, operation of analysers is simple but interpretation of the chromatograms <u>requires expertise</u>. A careful evaluation of the graphic part of the electrochromatogram and of the retention times (elution) of the variants must be made
- Different Hb variants have a similar retection time as HbS.
- Also, attention must be paid to **<u>quality control</u>**, especially for measurement of HbA₂.

Numerical part:

- *Name of the peak (window)*
- •Retention time
- •Percentage of the analyte

"Window" refers to the time interval within which the most common hemoglobin variants may elute

The graphics

- Baseline
- Presence of anomalous peak
- Morphology of the peak

•baseline

• Morphology of the peak

9 %

7

•presence of anomalous peak

Hemoglobinopathies are the only hereditary diseases in which it is possible identify healthy carriers with blood tests (screening of the first level) rather than molecular analysis.

From Phenotype

To Genotype

11 p15.5

Non-alpha Cluster (β–*Cluster*)

BETA, DELTA AND ALPHA GLOBIN SYNTHESIS

HEMOGLOBINOPATHIES HEREDITARY

MICROCYTHEMIA or THALASSEMIA

- 1) lack of- or reduction in the synthesis of the corresponding globin chain.
- 2) altered amino acid sequence with the production of highly unstable globin chains and / or low affinity for other chains.
- **Cause:** UNBALANCED ratios of the normal bio-synthetic α/β or α/δ .

HEMOGLOBIN VARIANTS

- 1) altered amino acid sequence (HbS, HbC, HbD)
- 2) synthesis of a normal amount of the corresponding globin chain.
- Cause: an alteration of the normal physiology of the globin chain produced.

PHENOTYPIC CLASSIFICATION OF HEMOGLOBINOPATHIES

Typical Phenotypes

the typical parameters of α -, β - or δ - thalassemia or variant hemoglobin carrier' phenotype are present

Atypical Phenotypes

the typical parameters of α , β -thalassemia or variant hemoglobin carrier' phenotype are not present

Typical Phenotypes

ΤΥΡΙCAL PHENOTYPE OF β-THALASSEMIA TRAIT

- Microcytosis (reduced values of MCV ed MCH)
- $\blacktriangleright \quad \text{Increased levels of HbA}_2$

β°

absence of beta-chains Marked microcytosis (MCV < 65 fl) High value of HbA₂ (>5.0%) modest presence of beta-chains Marked microcytosis (MCV 65-68 fl) High value of HbA₂ (4.5-5.0%)

β⁺

$\beta^{++(mild)}$

low presence of beta chains mild microcytosis (MCV 68-75 fl) HbA₂ borderline or slightly above the normal levels (3.5-4.5% or >5,5%) $\beta^{+++(silent)}$

low presence of beta chains slight microcytosis or normal (MCV >78-80 fl) HbA₂ borderline (3,3-3,9%)

β-<u>Thalassemia</u>:

In most cases, first-level analysis is used to define the status of a healthy carrier

	RBC	5.60	5.46	4.96
	HB	13.8	13.9	12.8
	HCT	41.4	42.9	41.4
	MCV	61.5	64.9	70.5
	MCH	22.1	20.1	22.6
	MCHC	32.1	34.1	32.0
	RDW	13.4	13.4	13.4
	HbA ₂	5.4%	4.9%	4.0%
Presumpt	ive Diagnosis of:	β^0 -carrier	β^+ -carrier	β^{++} -carrier

Alpha-Thalassemia

<u>Global Distribution of Thalassemia</u>: carrier frequencies of α -thalassemia alleles (%)

α+	RBC HB HCT MCV MCH HbA ₂	4.94 13.7 40.8 80.6 27.1 2.9%	5.14 13.7 41.8 79.5 26.7 2.7%	5.55 13.5 41.3 74.0 24.2 2.7%	5.65 14.4 43.7 77.3 25.5 2.6%	
		α-3.71/αα	α-4.2/αα	$\alpha^{NcoI}\alpha/\alpha\alpha$	$\alpha^{HphI}\alpha/\alpha\alpha$	
α°	RBC HB HCT	5.53 12.6 38.8	5.47 11.0 38.3	6.24 13.2 41.0	5.59 12.3 38.5	6.39 13.3 40.4
	MCV MCH HbA ₂	70.0 22.9 2.8	63.0 20.1 2.7	21.1 2.4	68.8 22.1 2.7%	63.0 20.7 2.4%
		$\alpha^{3.71}/\alpha^{3.71}$	$\alpha^{3.71}/\alpha^{4.2}$	$\alpha^{3.7I}/\alpha^{HphI}\alpha$	med/αα	20.5/αα

Presumptive Diagnosis of $\alpha\mbox{-thalassemia}$

δ-Thalassemia in Sicily

Slow H	[b			1.5%
HbA ₂	2.0%	1.8%	1.9%	1.3% 🗲
MCH	27.1	27.7	28.2	27.5
MCV	90.6	89.5	88.0	87.3
HCT	45.8	41.8	41.3	43.7
HB	13.5	14.2	14.5	14.4
RBC	4.60	5.14	5.25	5.65

Presumptive Diagnosis of $\delta\text{-thalassemia}$

RBC Hb НСТ MCV **MCH RDW**

%

 $HbA_2\ NYU\ (delta\ 12(A9)\ Asn>Lys\)$

Hb A₂' (delta 16(A13) Gly>Arg)

HbA₂-Coburg (delta 116(G18) Arg>His)

Atypical Phenotypes

ATYPICAL PHENOTYPES

- -1- HbA₂ borderline with normocytosis or microcytosis
- -2- Microcytosis with normal levels of HbA₂ ed HbF
- -3- Microcytosis with very high level of HbA₂
- -4- Increased levels of HbF

ATYPICAL PHENOTYPES

-1- HbA₂ borderline with normocytosis or microcytosis

- -2- Microcytosis with normal levels of HbA₂ ed HbF
- -3- Microcytosis with very high level of HbA₂
- -4- Increased levels of HbF

HBA₂ BORDERLINE WITH NORMOCYTOSIS OR MICROCYTOSIS

3.1%< <u>HbA₂ borderline</u> < 4.0%

Causes:

- Silent mutations in the $\ \beta$ -globin gene
- Presence of triple-alpha allelic structure
- Co-inheritance of β mutations and δ mutations
- Co-inheritance of β mutations and $~\alpha$ mutations
- • β -globin variants
- Other: Hyperthyroidism
 Use of anti-HIV retroviral drugs (AZT)
 Dosage of the HbA₂ value

β promoter mutations (silent mutations)

β ⁻⁹² /β	β^{-101}/β
RBC 4.92 4.91	4.10 5.01
HB 15.3 12.8	12.0 14.0
MCV 87.0 82.3	86.0 84.0
MCH 31.2 27.5	29.2 28.0
RDW 12.8 12.9	13.3 12.2
Hb A ₂ 3.6 3.8	3.6 4.0
Hb F 0.2 0.4	1.7 1.3

	RBC	5.21	6.11	5.33	5.39	
	HB	9.5	11.2	9.4	9.9	
B^{-101}/B^+	MCV	57.7	61.0	57.0	58.0	←──
ρ γρ	MCH	18.2	18.4	17.6	18.4	←──
	RDW	22.9	17.4	22.4	16.1	
	HbA_2	7.3	7.2	6.6	5.4	←──
	Hb F	5.3	5.3	14.1	3.1	
	RBC	6.57	5.13	3.96		
	HB	11.3	9.5	9.8		
$R - 101/R^{0}$	MCV	56.0	60.0	83.2		
ρ γρ	MCH	17.2	18.6	25.6		
	RDW	20.3	20.4	19.9		
	HbA_2	7.8	6.5	4.8	←───	
	Hb F	3.2	20.4	8.7		

ααα/αα

triple-alpha allelic structure

HBA₂ BORDERLINE WITH NORMOCYTOSIS OR MICROCYTOSIS

3.1%< <u>HbA₂ borderline</u> < 3.9%

Borderline HbA₂ is not a rare event and it should be more investigate,

specially in presence of reduced MCV value and if partner is an healty

carrier of β–thalassemia.

ATYPICAL PHENOTYPES

-1- HbA₂ borderline with normocytosis or microcytosis

-2- Microcytosis with normal levels of HbA₂ ed HbF

-3- Microcytosis with very high level of HbA₂

-4- Increased levels of HbF

MICROCYTOSIS WITH NORMAL LEVELS OF HBA2 AND HBF

- Reduced values of MCV and MCH (< 80 fl, e < 26 pg)
- HbA₂ \leq 3.2%, HbF \leq 2%

Causes:

- α° thalassemia (two alpha genes mutated)
- α^{+} thalassemia (one alpha gene alterated)
- α^+ thalassemia (one alpha gene alterated)
- β mild or slight mutations in eterozygosis with δ mutations
- Hemoglobin Variants
- Iron deficiency
- Age

INTERACTIONS BETWEEN BETA AND DELTA MUTATIONS

	β ^{Cd30} /β	β ^{Cd30} /β	β ^{Cd39} /β	β ^{Cd39} /β
Hb F	0.6%	1.3%	2.6%	0.5%
Hb A ₂	5.6%	3.5%	5.2%	3.5%
RDW	14.3	14.3	13.9	15.1
MCHC	32.7	32.7	31.9	32.0
MCH	20.0	20.2	21.3	20.2
MCV	61.2	61.8 🔶	62.0	59.6 🔶
HCT	37.3	37.1	37.3	36.1
HB	12.3	12.2	11.9	11.2
RBC	6.10	6.01	5.58	5.54

RBC	5.81	5.64	6.05	6.62			
HB	12.1	11.6	12.4	13.1			
HCT	37.0	37.0	39.6	41.5			
MCV	64.0	65.6 🔶	65.0 🔶	62.7 🔶			
MCH	20.9	20.6	20.6	19.9			
MCHC	32.8	31.4	31.5	31.7			
RDW	14.8	14.5	13.2	14.5			
HbA_2	4.8%	3.5%	(3.2%) ←	• (3.1%) ←			
Hb F	<0.5%	0.9%	0.0%	0.5%			
βIVSI nt 110/β			BIVSI nt 110/B				
			+ '				
			გCd27/გ				
			0 10				

RBC	5.81	5.65	6.39
HB	12.1	11.9	13.3
HCT	37.0	34.7	40.4
MCV	64.0	61.4 -	63.0
MCH	20.9	19.5	20.7
MCHC	32.8	31.7	32.9
RDW	14.8	15.3	13.8
A_2	4.8%	2.8%	2.6% 🖡
F	<0.5%	1.0%	<0.5%
$\beta^{IVSI nt110}/\beta$		$\beta^{IVSI nt110}/\beta$	$\alpha^{-20.5}/\alpha\alpha$
		δ^{Cd142}/δ	
		HbA ₂ Fitrzoy	

MICROCYTOSIS WITH NORMAL LEVELS OF ${\rm HBA}_2\,{\rm AND}\,\,{\rm HBF}$

δ+β++

MICROCYTOSIS WITH NORMAL LEVELS OF ${\rm HBA}_2\,{\rm AND}\,\,{\rm HBF}$

ATYPICAL PHENOTYPES

- -1- HbA₂ borderline with normocytosis or microcytosis
- -2- Microcytosis with normal levels of HbA₂ ed HbF
- -3- Microcytosis with very high level of HbA₂
- -4- Increased levels of HbF

MICROCYTOSIS WITH VERY HIGH LEVEL OF HBA₂

- Reduced values of MCV ed MCH (< 80 fl, e < 26 pg)
- $HbA_2 > 6.0\%$

Causes:

 \circ Hemoglobin Variants : Hb E (Cd 26 Glu →Lys)

 \circ β -cluster deletions

MCV	70.0 +/- 5.0
Hb	12.5 +/- 0.7
RBC	6.00 +/- 0.5
Boston:	δ87 - β116
Baltimora:	δ50 - β86
Hollandia:	δ22 - β50

22.0 +/- 1.5

BioRad V II

Patient Data			MILLYSIS Daca		
Sample ID:	PENNINO	ANNA	Analysis Performed:	18/09/2017	1
Patient ID:			Injection Number:	7571R	
Name:			Run Number:	316	
Physician:			Rack ID:	0006	
Sex:			Tube Number:	5	
DOB:			Report Generated:	16/02/2018	1
Comments:			Operator ID:		

Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak Area
F	5.6*		1.11	106934
Unknown		1.0	1.22	19848
P2		2.9	1.37	58327
P3		3.7	1.77	75578
Ao		75.5	2.44	1530939
A2	10.8*		3.51	235846

Total Area: 2,027,473

F Concentration = 5.6*% A2 Concentration = 10.8*%

*Values outside of expected ranges

Analysis comments:

Tosoh G 11

HbA₂(HPLC)

MCH

Patient Chromatogram

Date: 16/02/2018

10-12% (2% HbA₂)

Last Name: Barcode: 15 Rack: 0006 Position: 07 Sample Num	Result 5526 nb: 16340	First Name: Unknown Theor. Plate: 1061 Operator: SUPERUSER Analyzer: G11 340 <u>Flag & Comment:</u>		Date of birth: PUI: Version: 4.41.0.0 Rev. I Date of analysis: 19/09/2017 Time of analysis: 16.22.08			
Parameter	Value %	Time min.	Area	Total Area	V=/Ax+	R)	
P00	2.4%	0.23	72.69	3.008			
P01	0.4%	0.41	13.1		Element	Easter A	Easter B
F	4.3%	0.61	136.7		Element	Paciol-A	Pactor-B
P02	0.3%	0.67	7.78		1	0.9552	-0.0530
P03	1.2%	0.99	35.08		2	1.3852	0.3157
P04	3.5%	1.21	103.84				
P05	4.9%	1.37	147.63				
AO	70.8%	1.84	2.130.7				
AZ	2.5%	2.21	46.97				
P06	9.3%	2.69	279.38				
P07	0.1%	3.33	4.48				
P08	0.9%	3.81	25.73				
P09	0.0%	4.46	1.08				
P10	0.0%	4.58	1.25				
P11	0.1%	4.68	1.54				

MICROCYTOSIS WITH VERY HIGH LEVEL OF HBA2

- Reduced values of MCV ed MCH (< 80 fl, e < 26 pg)
- $HbA_2 > 6.0\%$

Causes:

 \circ Hb Lepore

 \circ Hemoglobin Variants : Hb E (Cd 26 Glu \rightarrow Lys)

 \circ β -cluster deletions

Haemoglobin AE Variant

TOSOH EUROPE Transportstraat 4

3980 Tessenderlo

Contextual assessment of hematological data: same window, similar percentage and differente complete blood count

Hb E (beta 26(B8) Glu>Lys)

Hb E (beta 26(B8) Glu>Lys) + $\alpha^{3.7}$ / $\alpha\alpha$

Hb St.Truiden (alpha₂ 68(E17) Asn>His)

Abnormal Hemoglobin

Careful observation of the hematology (complete blood count) and hemoglobin (HPLC graph / retention time and percentage of peak) state may be suspected the presence of a particular hemoglobin variant.

In presence of an abnormal hemoglobin, the results obtained by first-level testing remains a *presumptive* data and the molecular analysis must be performed. Abnormal peaks in windows dedicated to the most frequent variants

Hb D-Los Angeles (beta 121(GH4) Glu>Gln)

HbS (beta 6(A3) Glu>Val)

HbC (beta 6(A3) Glu>Lys)

Contextual assessment of hematological data: same window, same percentage but differente complete blood count

F

P12

RBC	4.62
Hb	12.4
НСТ	38.4
MCV	81.0
MCH	28.9
RDW	11.9
	F: 0.4%

HbS (beta 6(A3) Glu>Val)

Hb G-San José (beta 7(A4) Glu>Gly)

5.66

0.1

Contextual assessment of hematological data: same window, differente percentage and differente complete blood count

HbS (beta 6(A3) Glu>Val)

HbS (beta 6(A3) Glu>Val) + $\alpha^{3.7} / \alpha^{3.7}$

Hb Setif (alpha2 94(G1) Asp>Tyr)

Contextual assessment of hematological data: same window, same percentage and same complete blood count

Hb G-Copenhagen (beta 47(CD6) Asp>Asn)

Hb G-Coushatta (beta 22(B4) Glu>Ala) o Hb G-Saskatoon Contextual assessment of hematological data: similar window, similar percentage and same complete blood count

Hb Camden (beta 131(H9) Gln>Glu)

Hb Santa Clara (beta 97(FG4) His>Asn)

Hb Camperdown (beta 104(G6) Arg>Ser)

ATYPICAL PHENOTYPES

- -1- HbA₂ borderline with normocytosis or microcytosis
- -2- Microcytosis with normal levels of HbA₂ ed HbF
- -3- Microcytosis with very high level of HbA₂

-4- Increased levels of HbF

INCREASED LEVEL OF HBF

• Normal HbA₂ levels, Increased HbF levels (2% - 30%)

Phenotypic classification

- * "Thalassemic mutations" with reduced MCV and MCH values and heterocellular HbF distribution.
- "Hereditary persistence of HbF (HPFH)" with normal MCV and MCH values and pancellular HbF distribution.

	^G γ ^A γHPFH	^G γ ^A γ(δβ ⁰)talassemia
Erythrocytes morphology	normal	reduced
MCH	almost normal	reduced
HbF	15-30%	4-18%
Distribution of HbF	pancellular	heterocellular

- There are about 130 known point mutations of γ-globin genes
- About 20 affected the γ-globin gene promoter resulting in increased HbF level

Mutazione	Gene	Popolazioni	Cat	ene	Distribuzione	Hb F
201		interessate	Gγ	Aγ	Hb	nell'eterozigote
delezione da -225 a -222 (delez, di 4 bp)	Аү	Africani	66%			6-7%
delezione da -225 a -222 (delez, di 4 bp)	АүТ	Sardi				
da -203 a -200 +CCCC	Gγ	Tunisini				и л р ==
-202 C → G	Gγ	Africani	100%		pancellulare	15-20%
-202 C → T	Aγ	Africani	10%	90%		3%
-198 T → C	Aγ	Inglesi	10%	90%	eterocellulare	4-12%
-196 C → T	Aγ	Italiani (Sardi) Cinesi	5%	95%	pancellulare	10-15%
-195 C → G	Aγ	Brasiliani	14%	86%		4-5%
-175 T → C	Aγ	Afro Americani		100%	pancellulare	17-38%
-175 T → C	Gγ	Afro Americani Inglesi Italiani	100%			28-29%
	100	(Sardegna sett.)				 Manager
-161 G→A	Gγ	Africani	100000000000000000000000000000000000000		March 199	1-2%
-158 C→T	бү	Arabi Sauditi Afro Americani	100%		eterocellulare	non aumentata
-158 C → T	GGγ	Afro Americani di Atlanta	100%		eterocellulare	2-5%
-117 G → A	Aγ	Greci Italiani (Sardegna sett.)	10%	90%	pancellulare	8-10%
-114 C→G	Gy	Australiani				8.6%
-114 C→T	Gγ	Giapponesi				11-14%
i -114 C→T (tipo Georgia)	Aγ	Afro Americani		100%		3-6%
delezione da -114 a -102 (delez, 13 bp)	Aγ	Africani		100%		30%
mutazione sconosciuta		Svizzeri	40%	60%	eterocellulare	3-8%
3 mutazioni dell'enhancer	Aγ	Afro Americani	50%	50%	eterocellulare	4-8%
3' gene Ay	1	di Seattle		2070	eterovendiare	. 070
traslocazione di segmenti		?	36%	64%	eterocellulare	5-8%
dei cromosomi 6, 9, 11, 20 con un breakpoint nella regione del locus B		r.	5010	0170	eterocontante	
(nessuna delezione)						
-110 A→C	Gγ	Cecoslovacchi	95%	5%		0.8-1.0%

RBC	5.5
Hb	12.5
НСТ	39.3
MCV	65.0
MCH	22.5
RDW	16.3

Sicilian Delta-beta (deletion of 13378 nts from the delta gene to beta gene)

 γ^{G} -158 etero

$\delta\beta$ -Microcitemie

Detetion	<u>δβ–Thal</u>	<u>δ+β Thalassemia</u>
RBC	5.50	5.50
Hb	13.5	13.5
MCV	→ 75.0	→ 64.0
HbA ₂	→ 2.40%	→ 3.0-3.8%
HbF	→ 12-15%	→ < 1%

INTERACTIONS BETWEEN BETA AND ALPHA MUTATIONS

		$\alpha^{Hphl}\alpha/\alpha\alpha$			$\alpha^{3.7 \text{ I}}/\alpha\alpha$
β ^{ιvs}	^{51 nt110} /β	$\beta^{\text{IVSI nt110}}/\beta$		β ^{-87G} /β	β ^{-87G} /β
Hb F	<0.1%	<0.1%	Hb A Hb F	6.1% 1.4%	6.0% = 0.7%
Hb A ₂	5.1%	5.3% =		13.1	13.2
RDW	14.8	15.4	MCHC	32.4	33.8
MCHC	32.8	32.5	MCH	22.4	27.3
MCH	20.9	21.8	MCV	/3.4	80.8 †
MCV	64.5	68.6	HCI	39.0	45.3
НСТ	37.0	38.7	HB	12.4	15.3
HB	12.1	12.6	RBC	5.07	5.61
RBC	5 81	5 77			

β ^{IVSI nt}	^{α 6} /β	β ^{IVSI nt 6} /β +	β ⁻¹⁰¹ /β	β ⁻⁹² /β	
Hb F	0.9%	0.7%	1.9%	1.5%	
Hb $A_2 <$	4.0%	3.9% =	3.8%	3.9%	\sum
RDW	14.0	14.3	12.7	12.9	
MCHC	31.6	33.4	33.9	31.5	
MCH	22.5	27.1	28.7	28.5	
MCV	71.3	81.2 🕇	84.9	82.3	
HCT	37.6	34.6	35.1	35.3	
HB	11.9	11.6	11.9	12.9	
RBC	5.27	4.26	4.13	4.77	

 $\alpha^{3.7}$ // $\alpha\alpha$

 $\alpha + \beta^{++}$

➢From the integration of the hematological and hemoglobinic (HPLC) status, the first level study makes it possible to obtain a diagnosis, in most cases, "*presumptive*".

➢ In the case of classical carriers of beta-thalassemia and deltathalassemia, the first level study is *«exhaustive»*.

➤ In the case of alpha-thalassemia carriers, the first-level study provides only a "*suspect*" that must then be confirmed with the molecular.

➤In the case of variants the molecular analysis must always be performed for the definitive diagnosis, even if the careful observation of the blood count and of the HPLC graph (Retention Time and Peak Percentage) is possible to suspect the presence of a given variant.

Concluding

«The whole is more than the sum of the individual parts»